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Abstract. The calculation of the low-damping Kramers escape rate (in the context of magnetic
relaxation of single-domain ferromagnetic particles i.e. superparamagnetism) for non-axially-
symmetric potentials of the magneto-crystalline anisotropy (which is of importance in view of
recent experiments on the superparamagnetic relaxation time of individual small ferromagnetic
particles) is considered in detail (in view of the intricate mathematical manipulations which are
required) using the uniform expansion of the transition rate method proposed by Matkowskyet al
(1984J. Stat. Phys.35 443) which has been adapted to spins by Klik and Gunther (1990J. Stat.
Phys.60473). The results agree with those of Klik and Gunther (up to a factor of 2) and with later
calculations of the escape rate using the original Kramers energy diffusion method.

1. Introduction

Recent successes [1, 2] in isolatingindividual single domain ferromagnetic particles
(containing circa 105 spins which behave as asingle giantspin hence the generic title
superparamagnetism), in making measurements of the time of reversal of the magnetization
(Néel time [3]) of an individual particle and in verifying [4] the behaviour of the reversal
time as a function of the damping parameter predicted by the Néel–Brown [3] theory have
stimulated renewed interest in the Kramers [5, 6] theory of escape of particles over potential
barriers (flux over barrier method) due to the shuttling action of the Brownian motion. The
Néel–Brown [3] theory is in effect an adaptation to spin relaxation of the Kramers theory so
that the verification [4] of that theory in effect confirms the Kramers [5, 6] conception of a
thermal relaxation process over a potential barrier.

The Kramers calculation was originally (in order to make rigorous the supposition of Néel
[7] that the reversal time was governed by an Arrhenius process [7]) adapted to spin relaxation
by Brown [8] who in his first calculation [8] confined himself to axially symmetric (functions
of the latitude only) potentials of the magnetocrystalline anisotropy so that the calculation of
the reversal timeτ in the context of the Kramers theory is governed by a one dimensional
Fokker–Planck equation with the result that theτ value obtained isvalid for all values of
the damping parameter[3]. As a consequence of this very particular result the analogy with
the Kramers theory only becomes fully apparent when an attempt [3, 9, 10] is made to treat
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non-axially-symmetric potentialsof the magnetocrystalline anisotropy which are functions of
both the latitude and longitude in which context all the particular cases of the escape rate as
a function of the friction considered by Kramers will appear. In this context Brown [3, 9, 11]
succeeded in giving a formula for the relaxation time for single-domain particles (spins) in the
intermediate- to high-damping (IHD) limit (overdamped oscillator) which is the exact analogue
of the Kramers IHD formula (his equation (25)) for particles [3]. The calculation is however
very much more involved [11] than that for particles by virtue of the facts that it must be
carried out in spherical polar co-ordinates, that the undamped motion isrotational rather than
librational in origin [12] and that the inertia of the particle plays no role—the role of inertia
being mimicked [3] by the gyromagnetic term in the equation of motion of the magnetisation
(see Gilbert’s equation [13]).

Brown [9] in his 1979 calculation for non-axially-symmetric potentials only considered the
IHD case when adapting the Kramers theory to spin relaxation, while Kramers [5] also showed
(by essentially treating the low-damping case as a perturbation of the zero-damping case and
constructing a diffusion equation for the energy) how a simple formula (his equation (28)) for
the inverse relaxation time (escape rate) could be obtained in the very low-damping limit where
the condition that the damping times the barrier height is much less than unity holds (with of
course the barrier height being very much greater than unity so as to maintain the concept
of a lifetime). This defect was remedied by Klik and Gunther [14, 15] who used the theory
of first passage times to obtain the magnetic analogue of the Kramers low-damping formula
so bypassing the Kramers energy controlled diffusion method entirely. Their analysis thus
completed the extension of the ideas of Kramers to spin relaxation, as it was now possible to
delineate a region of validity as a function of the friction of the variousτ formulae for spins just
as in the corresponding Kramers formulae for Brownian particles [3, 5]. Subsequently, the low-
damping formula has been rederived by Coffey [17] who used the energy diffusion method as
slightly modified by Praestgaard and van Kampen [21] (i.e. the virial theorem [12] is invoked)
and by Garaninet al [18] who (in a discussion of how non-axially-symmetric asymptotes tend
to the axially symmetric asymptotes in the appropriate limits) used the Kramers method with a
transformation to energy-phase variables as in Risken’s book [20] equations (4.130)–(4.132).

The calculation of Klik and Gunther [14, 15] (since it involves an extension to spins of
the uniform asymptotic method for the calculation of first passage times which Matkowsky
et al [16] formulated for the original Kramers problem) involves complicated mathematical
manipulations [3] of which essentially no details are given. Hence it is the purpose of this
paper to show in detail how the low-damping Kramers escape rate may be derived from the
first-passage-time method. The essence of the calculation is the fact that for a domainD the
first passage time is approximately the time for a random walker to reach the boundary of
the domain for the first time from a pointx0 well embedded in the domain. Thus the mean
first passage time is the average time for the random walker to reach the separatrix manifold
between the bounded and unbounded motions for the first time [6].

Matkowskyet al [16] have proposed a method which they term the uniform asymptotic
expansion of the transition rate which may be described as follows: They first remark that the
Kramers escape rateκ is the reciprocal of the mean time to escape the well. This time is the
sum of the mean timeτ1(A) to reach the trajectoryE = Ec (see figure 1) from the bottom of
the well and the mean time to proceed fromE = Ec to 0 (see figure 1) and then escape the
well. The latter is twice the mean first passage timeτ2(Ec) from Ec to 0, since trajectories
that reachE = Ec are equally likely to leave or to return to the well.

Hence a formula forκ is, according to Matkowskyet al [16], given by

κunif = 1

τ1(A) + 2τ2(Ec)
. (1)
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Figure 1. Sketch of the critical energy curveE = Ec and the separatrix0 [16] in phase space. The
critical energyEc is the energy required by a particle to just escape from the well. When a particle
reaches this energy it may escape or fall back with equal probability. The separatrix separates the
bound and unbound motions. The separation of these curves (greatly exaggerated in the diagram)
is infinitesimally small.

Matkowskyet al [16] show that for small friction, that is in the low-temperature limit,

τ1(A) = O

(
1

η

)
while

τ2(Ec) = O(1)

so thatτ1(A) � τ2(Ec) thusκunif ≈ 1/τ1(A).
Kramers [5] developed (by writing the Fokker–Planck equation in angle (fast) action (slow)

variables and averaging out the fast angle (phase) variable) the formula

κ1 = 1

τ1(A)
= ηβIcωA

2π
exp(−βEc) (2)

with β = 1/kT , where the system is governed by the Langevin equation

ẍ + ηẋ +
∂U

∂x
= λ(t)

whereλ(t) is the white noise term and for convenience we take the mass to be one, also:

ωA =
√

U ′′(xA)

Ic =
∮

E=Ec

ẋ dx

ẋ =
√

2[Ec − U(x)]

for low values ofη � 1, while Matkowskyet al [16] have shown that the same formula (2)
holds for low temperatures and arbitraryη. Matkowskyet al [16] and Kramers [5] developed
these formulae for point particles with energy given by

E = p2

2m
+ V (q)

wherep is the momentum of the particle andq is its position andm is taken equal to unity.
In all the calculations a single potential well is assumed (see figure 2) so that a particle once
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Figure 2. A sketch of the type of well dealt with in the article. When a particle escapes from the
well it never returns. A is the minimum of the potential function(U). B is the region to which the
particles escape. C is the top of the barrier over which the particles escape.

having reached the separatrix never returns which meansρ(0) = 0 whereρ(0) is the density
of particles at the separatrix. However, a similar analysis also holds for orientations of the
magnetization vector for magnetic particles, the role of the inertia in mechanical problems
being mimicked, as stated above, by the gyromagnetic term in Gilbert’s equation [13]. Thus
in this paper, we shall calculateκ1 by the method of Matkowskyet al giving all the details of
the considerable mathematical manipulations which are involved.

2. The adjoint Fokker–Planck operator and differential equation for the mean first
passage time

In order to calculate the mean first passage time, in general (we remark that, although we shall
be concerned only with the high-barrier or weak-noise limit here, the concept of a first passage
time holds, unlike that of an escape rate, irrespective of the height of any potential barrier
that may be involved), it is first necessary to construct the adjoint Fokker–Planck equation (or
backward Kolmogorov equation) from the Fokker–Planck (or forward Kolmogorov equation)
for the distribution of magnetic moments on the surface of the unit sphere. Risken [20] gives
the Fokker–Planck operator inn dimensions as

LFP ({x}, t) = − ∂

∂xi

D
(1)
i ({x}, t) +

∂2

∂xi∂xj

D
(2)
ij ({x}, t) (3)

where{x} = x1, x2, . . . , xn are the co-ordinates of a point in space at timet andD
(1)
i , D

(2)
ij

are the drift and diffusion coefficients respectively and the Einstein summation convention is
used.
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In terms of the spherical polar co-ordinates(ϕ, p) wherep = cosθ [3, 14, 15] the operator
in equation (3) operating onW(ϕ, p, t) becomes

LFP W(p, ϕ, t) = ∂

∂p

[
αγ

Ms

(1 − p2)Hp +
γ

Ms

Hϕ

]
W +

∂

∂p

[
1

β

αγ

Ms

(1 − p2)
∂

∂p

]
W

+
∂

∂ϕ

[
− γ

Ms

Hp +
αγ

Ms

(1 − p2)−1Hϕ

]
W +

∂

∂ϕ

[
1

β

αγ

Ms

(1 − p2)−1 ∂

∂ϕ

]
W (4)

(againβ = 1/kT ; see below for the other quantities).W(ϕ, p, t) is the concentration of
particles whose magnetization vector has orientation(ϕ, p).

Brown [8] actually derived the Fokker–Planck equation

∂W

∂t
= LFP W

from Gilbert’s equation

dM
dt

= γ M ×
(

− ∂V

∂M
− η

dM
dt

)
whereV is the Gibbs free energy,M is the magnetisation vector for a single particle whose
magnitude isMs , γ is the gyromagnetic ratio,η is a phenomenological damping constant and

∂V

∂M
≡ ∂V

∂Mx

i +
∂V

∂My

j +
∂V

∂Mz

k.

If we define the frictionα by the equation

α = ηγMs

then an equivalent form for this equation is

−dM
dt

= γ

(
M × ∂V

∂M

)
+

αγ

Ms

(
M × ∂V

∂M

)
× M

whence Klik and Gunther [14] wrote down the Langevin equations for a single particle in
spherical polar co-ordinates

ṗ = −αγ

Ms

(1 − p2)Hp − γ

Ms

Hϕ

ϕ̇ = γ

Ms

Hp − αγ

Ms

(1 − p2)−1Hϕ

whereH is the Hamiltonian function equal to the energyE.
Now

∂

∂p

[
1

β

αγ

Ms

(1 − p2)
∂W

∂p

]
= ∂2

∂p2

[
1

β

αγ

Ms

(1 − p2)W

]
+

∂

∂p
2

1

β

αγ

Ms

pW.

Substituting this into the equation forLFP W gives:

LFP W = ∂

∂p

[
αγ

Ms

(1 − p2)Hp +
γ

Ms

Hϕ + 2
1

β

αγ

Ms

p

]
W +

∂2

∂p2

1

β

αγ

Ms

(1 − p2)W

+
∂

∂ϕ

[
− γ

Ms

Hp +
αγ

Ms

(1 − p2)−1Hϕ

]
W +

∂2

∂ϕ2

1

β

αγ

Ms

(1 − p2)−1W (5)

which is of the form of equation (3) above with drift and diffusion coefficients:

D(1)
p = −αγ

Ms

(1 − p2)Hp − γ

Ms

Hϕ − 2
1

β

αγ

Ms

p D(1)
ϕ = γ

Ms

Hp − αγ

Ms

(1 − p2)−1Hϕ

D(2)
pp = 1

β

αγ

Ms

(1 − p2) D(2)
ϕϕ = 1

β

αγ

Ms

(1 − p2)−1 D(2)
pϕ = D(2)

ϕp = 0.
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Now the backward Kolmogorov equation is, according to Risken [20]

∂

∂t ′
P({x}, t | {x ′}, t ′) = −L+

FP ({x ′}, t ′)P ({x}, t | {x ′}, t ′) (6)

L+
FP ({x ′}, t ′) = D

(1)
i ({x ′}, t ′) ∂

∂x ′
i

+ D
(2)
ij ({x ′}, t ′) ∂2

∂x ′
i∂x ′

j

(7)

whence the Fokker–Planck adjoint operatorL+
FP is given by:

L+
FP = D(1)

p

∂

∂p′ + D(1)
ϕ

∂

∂ϕ′ + D(2)
pp

∂2

∂p′2 + D(2)
ϕϕ

∂2

∂ϕ′2 (8)

(sinceD(2)
pϕ = D(2)

ϕp = 0), so that

L+
FP =

[
−αγ

Ms

(1 − p′2)Hp′ − γ

Ms

Hϕ′ − 2
1

β

αγ

Ms

p′
]

∂

∂p′

+

[
γ

Ms

Hp′ − αγ

Ms

(1 − p′2)−1Hϕ′

]
∂

∂ϕ′

+
1

β

αγ

Ms

(1 − p′2)
∂

∂p′2 +
1

β

αγ

Ms

(1 − p′2)−1 ∂2

∂ϕ′2 . (9)

The partial differential equation for the mean first passage time is then in terms of the source
polar co-ordinates(ϕ′, p′) as in Risken [20], chapter 8, equation 8.15(a)

L+
FP ({x ′})τ ({x ′}) = −1 (10)

which must be solved subject to the boundary conditions thatτ({x ′}) must vanish at the saddle
point{x}m (which is an absorbing point or trap); furthermore, since the poles of the sphere are
reflecting boundaries situated atp = ±1, the probability current must vanish at the poles.

The backward operator (which refers to the evolution of the system starting from the
source point) is written in terms of the source spherical polar co-ordinates{x ′} while the
forward operator is written in terms of the field co-ordinates{x}. In general this equation
may only be solved in closed form if the magnetic moment is a function of the angleθ only,
whence the first mean passage time may be written in terms of quadratures as described by
Coffey [3]. The resulting formula for the mean first passage time is then valid for all values
of the damping parameterα (frequently calleda). In the general case, where the distribution
function depends on bothθ andϕ, the mean first passage time is not usually used (because of
the difficulties involved in integrating partial differential equations when more than one space
variable is involved); rather the smallest non-vanishing eigenvalueλ1 of the Fokker–Planck
equation is calculated. The inverse of this in the high-barrier limit is then the normalized
relaxation time, where the relaxation time itself isτ ≈ 2τN/λ1.

The above discussion pertains to the exact calculation of the mean first passage time. Here
we are only interested in the mean first passage time for very weak damping (whereτ2 is ne-
glected) so that we may use a method (based on a uniform asymptotic expansion of the mean first
passage time) which has been developed by Matkowskyet al[16] and which is described below.

3. Formal expression for the mean first passage time from the uniform asymptotic
method

Equation (10) now allows us, following Klik and Gunther [14, 15], to write down a formal
expression for the mean first passage timeτ1 for spins in the high-barrier and very low-
dissipation limit for non-axially-symmetric potentials, in a manner analogous to that used
by Matkowskyet al to treat the Kramers very low-damping case for particles. Just as for
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particles we will assume a single potential well (see figure 2) so that a spin having reached
the separatrix never reverses. The extension to the actual bistable or multistable potentials
characteristic of magnetic relaxation may be achieved by extending the arguments given in
section D, equations 4.51et seq.of Hänggiet al [6].

According to Matkowskyet al [16] in the context of particles and Klik and Gunther
[14, 15] in the context of spins, the contour of critical energy,E = Ec, which passes through
the saddle point, lies within the boundary layer near the separatrix,0, separating (taking the
spin example) the clockwise and anti-clockwise spins. Thus the uniform asymptotic expansion
method relies on the introduction of a domain,Q, such thatE < Ec, so that the spin cannot
reverse on the interior ofQ, andE = Ec on the boundary,∂(Q). It is assumed that the
boundary,∂(Q), is so close to the separatrix,0, that the passage time,τ2, from ∂(Q) to 0

may be ignored to the first order in temperature, i.e. the low-temperature, weak-noise limit,
in comparison to the mean time,τ(ϕ, p) (i.e. τ1), to reach the boundary∂(Q) starting from a
point (ϕ, p) well embedded inQ. Thus, in equation (10), following the method of [14]–[16],
we introduce an exponentially large quantity,τ(Q), independent (because the noise is assumed
to be very weak) of the starting point(ϕ′, p′) in Q, with

τ(ϕ′, p′) = τ(Q)uT (ϕ′, p′) (11)

and sup
Q

{uT (ϕ′, p′)} = 1.

Multiplying equation (10) across by e−βH and integrating overQ ([20] p 182) then yields∫ ∫
Q

e−βH L+
FP τ(ϕ′, p′) dp′ dϕ′ = −

∫ ∫
Q

e−βH dp′ dϕ′. (12)

Now using equations (11) and (12), we have:

−
∫ ∫

Q

e−βH dp′ dϕ′′ = τ(Q)

∫ ∫
Q

e−βH L+
FP uT (ϕ′, p′) dp′ dϕ′ (13)

sinceτ(Q) is constant onQ.
Thus

τ(Q) = −
∫∫

Q
e−βH dp′ dϕ′∫∫

Q
e−βH L+

FP uT (ϕ′, p′) dp′ dϕ′ . (14)

Equation (14) is the leading term in the uniform asymptotic expansion of the first passage time
of Matkowskyet al [16] for the problem at hand. The next step in the calculation is to express
the denominator of the right-hand side of equation (14), which is a surface integral overQ, as
a line integral using Stokes’ theorem. This calculation is rather intricate, so we present it in
detail in appendix A and simply give the main steps in the calculation below:

4. Expression of the denominator of equation (14) as a line integral using Stokes’
theorem

The first step in this calculation is to write out the denominator in equation (14) explicitly as
follows:∫ ∫

Q

e−βH L+
FP uT dp′ dϕ′ =

∫ ∫
Q

{
e−βH

[
− αγ

Ms

(1 − p′2)Hp′ − γ

Ms

Hϕ′ − 2p′ 1

β

αγ

Ms

]
∂uT

∂p′

+e−βH

[
γ

Ms

Hp′ − αγ

Ms

(1 − p′2)−1Hϕ′

]
∂uT

∂ϕ′

+e−βH

[
1

β

αγ

Ms

(1 − p′2)
∂2uT

∂p′2 +
1

β

αγ

Ms

(1 − p′2)−1∂2uT

∂ϕ′2

]}
dp′ dϕ′. (15)
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equation (14) may then be written with the aid of Stokes’s theorem (details in appendix A) as

τ(Q) = −
∫∫

Q
e−βH dp′ dϕ′

1
β

αγ

Ms

∮
∂(Q)

e−βH

[
(1 − p′2) ∂uT

∂p′ dϕ′ − (1 − p′2)−1 ∂uT

∂ϕ′ dp′
] (16)

which is an expression for the first mean passage time,τ(Q), in the limit of high barriers
essentially in terms of the quantityuT ; uT must now be expressed in terms of known quantities.
To do this, we need to construct a boundary layer approximation touT nearE = Ec by
introducing the stretching transformation:

η = β(Ec − E) = β(Ec − H). (17)

The calculations foruT in the boundary layer (using the dimensionless energy variableη) are
again rather involved; thus they are presented in detail in appendices B and C.

5. Final result for the mean first passage time using the stretching transformation

Since

uT = 1 − e−η

(see appendix C) we have

∂uT

∂p′ = e−η ∂η

∂p′ = e−η(−βHp′) and
∂uT

∂ϕ′ = e−η ∂η

∂ϕ′ = e−η(−βHp′).

So the denominator in equation (16) becomes:

1

β

αγ

Ms

∮
∂(Q)

e−βH e−βEc eβH [−(1 − p′2)βHϕ′ dϕ′ + (1 − p′2)−1βHϕ′ dp′]

= − αγ

Ms

e−βEc

∮
∂(Q)

[(1 − p′2)Hp′ dϕ′ − (1 − p′2)−1Hϕ′ dp′]

= − γ

Ms

1Ee−βEc (18)

where [14, 15].

1E ≡ α

∮
∂(Q)

[(1 − p′2)Hp′ dϕ′ − (1 − p′2)−1Hϕ′ dp′]

andα is the friction (see the Gilbert equation above).
1E [6] is the energy loss per cycle of the almost periodic motion at the saddle point which

follows by taking the time average of the rate of change of angular momentum. Equation (18)
represents the final simplification of the denominator.

The surface integral in the numerator in equation (16) may be approximately evaluated
using the method of steepest descents as follows:

We expandH as a Taylor series about the minimum

H = E0 +
(p − p0)

2

2!
E0

pp +
(ϕ − ϕ0)

2

2!
E0

ϕϕ

whereE0 is the value of the energy at the minimum,E0
pp, E0

ϕϕ are the partial derivatives of
the energy function evaluated at the minimum, and we have chosen a system of co-ordinates
in which the second-order mixed partial derivatives vanish at the minimum [19].

We shall now assume that most of the particles stay in the wellE < Ec and that the number
at large distances from the minimum is negligible. So we may extend the double integral over
Q to a double integral over the entire sphere without serious error. We further assume that
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instead of integrating overp from −1 to +1 that we can integrate from−∞ to +∞. We also
assume that we can integrate overϕ from −∞ to +∞ instead of 0 to 2π .

So the numerator of the right-hand side of equation (16) becomes:∫ ∞

−∞

∫ ∞

−∞
e−βE0 e− 1

2 β(p′−p′
0)

2E0
pp e− 1

2 β(ϕ′−ϕ′
0)

2E0
ϕϕ dp′ dϕ′ ≈ e−βE0

2π

β
√

E0
ppE0

ϕϕ

(19)

and the final formula for the mean first passage time from the minimum to the critical energy
curve in accordance with the equation

κ = 1

τ1(A)

(combining equations (18) and (19)) is:

τ(Q) = Ms

γ

2π

β1E

1√
E0

ppE0
ϕϕ

eβ(Ec−E0)

which on noting that the well angular frequency is given by

ω1 ≡ γ

Ms

√
E0

ppE0
ϕϕ

becomes

τ(Q) = 2π

ω1

1

β1E
eβ(Ec−E0) (20)

which differs from equation 4.5 of Klik and Gunther [14] by a factor of 1/2, a correction which
has been checked with and agreed to by Dr Klik (Klik I 1997 personal communication).

We remark that equation (20) has been derived under the assumption that all spins are
absorbed at the boundary, i.e. having reached the separatrix they never return to their original
orientation. In practise the potential in superparamagnetism will have several states of stability.
For the purposes of illustration it is useful to consider a symmetric bistable potential which
arises if a transverse field is applied to a system with simple uniaxial anisotropy. Here it may
be shown that the Kramers escape rate is, in the low damping limit,

κ = ω1

2π
β1E e−β(Ec−E0).

This equation takes account of crossings and recrossings of moments in a bistable potential.
The escape rate from one of the wells is then

κone well = ω1

4π
β1E e−β(Ec−E0)

with corresponding relaxation time

τe = κ−1 = 4π

ω1

1

β1E
eβ(Ec−E0).

τ , as calculated in this equation takes account of crossings and recrossings which occur with
probability 0.5. The time to reach the separatrix, which is the quantity calculated in the present
paper (where it is supposed that all particles that reach the separatrix never return), is

τ = τe

2
= 2π

ω1

1

β1E
eβ(Ec−E0).

We have illustrated how the calculation for a single-well potential may be adapted to a
symmetric bistable potential. The extension to an asymmetric bistable potential may be carried
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out in the manner described in section D of Hänggiet al [6] alluded to above. The result, which
is similar to that for particles, is

κ = β
1E11E2

1E1 + 1E2
(κT S

A→B + κT S
B→A)

where

κT S
A→B = ω1

2π
e−β(Ec−E1)

κT S
B→A = ω2

2π
e−β(Ec−E2)

Ei is the value of the energy at the minimum in well numberi and1Ei is the energy loss per
cycle at the saddle point for particles in welli.

6. Conclusion

In this paper in view of the extreme importance of accurate theoretical expressions for the
superparamagnetic relaxation time for the purpose of interpretation of experimental results on
individual small ferromagnetic particles [1, 2] we have given in detail the calculation of the
low-damping Kramers escape rate using the uniform asymptotic expansion of the transition rate
proposed by Matkowskyet al [16] and adapted to spins by Klik and Gunther [14]. The analysis
in this paper provides the details of the complicated mathematical manipulations which are
required in order to establish the low-damping formula for spins and which have not been given
hitherto. The results of the present detailed analysis verify the calculations of Klik and Gunther
and are in agreement with derivations of the low-damping formula using the entirely different
energy diffusion method of Kramers as adapted to spins which have been independently carried
out by Coffey using the method of Praestgaard and van Kampen [17] and by Garaninet al (to
be published) using a method involving a change of variables to energy and phase.
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Appendix A. Derivation of equation (16) from equation (14)

We expand the terms on the right-hand side of equation (15) as follows

−e−βH αγ

Ms

(1 − p′2)Hp′
∂uT

∂p′ = αγ

Ms

kT (1 − p′2)
∂ e−βH

∂p′
∂uT

∂p′ (A1)

− γ

Ms

Hϕ′ e−βH ∂uT

∂p′ = 1

β

γ

Ms

(−βHϕ′ e−βH )
∂uT

∂p′ = 1

β

γ

Ms

∂ e−βH

∂ϕ′
∂uT

∂p′ (A2)

−2p′ 1

β

αγ

Ms

e−βH ∂uT

∂p′ = +
1

β

αγ

Ms

{
∂

∂p′ (1 − p′2)
}

e−βH ∂uT

∂p′ (A3)

γ

Ms

Hp′ e−βH ∂uT

∂ϕ′ = − 1

β

γ

Ms

(−βHp′ e−βH )
∂uT

∂ϕ′ = − 1

β

γ

Ms

∂ e−βH

∂p′
∂uT

∂ϕ′ (A4)

−e−βH αγ

Ms

(1 − p′2)−1Hϕ′
∂uT

∂ϕ′ = 1

β

αγ

Ms

(1 − p′2)−1∂ e−βH

∂ϕ′
∂uT

∂ϕ′ . (A5)
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Referring to the first term in the final square bracket of the above double integral on the
right-hand side of equation (15) as (A6), and to the second term as (A7),

collecting together(A1) + (A3) + (A6) yields :
1

β

αγ

Ms

∂

∂p′

[
(1 − p′2) e−βH ∂uT

∂p′

]
collecting together(A5) + (A7) yields :

1

β

αγ

Ms

∂

∂ϕ′

[
(1 − p′2)−1 e−βH ∂uT

∂ϕ′

]
collecting together(A2) + (A4) yields :

1

β

γ

Ms

[
∂ e−βH

∂ϕ′
∂uT

∂p′ − ∂ e−βH

∂p′
∂uT

∂ϕ′

]
.

So∫ ∫
Q

e−βHL+
FP uT dp′ dϕ′ = 1

β

αγ

Ms

∫ ∫
Q

{
∂

∂p′

[
(1 − p′2) e−βH ∂uT

∂p′

]
+

∂

∂ϕ′

[
(1 − p′2)−1 e−βH ∂uT

∂ϕ′

]}
dp′ dϕ′

+
1

β

γ

Ms

∫ ∫
Q

[
∂ e−βH

∂ϕ′
∂uT

∂p′ − ∂ e−βH

∂p′
∂uT

∂ϕ′

]
dp′ dϕ′.

Now on applying Stokes’ theorem in a plane [22, 23] (also known as Green’s theorem in a
plane) to the second integral on the right-hand side we find

1

β

γ

Ms

∫ ∫
Q

[
∂ e−βH

∂ϕ′
∂uT

∂p′ − ∂ e−βH

∂p′
∂uT

∂ϕ′

]
dp′ dϕ′

= 1

β

γ

Ms

∮
∂(Q)

e−βH

[
∂uT

∂ϕ′ dϕ′ +
∂uT

∂p′ dp′
]

= 1

β

γ

Ms

∮
∂(Q)

e−βH duT

and, since on∂(Q) we haveH = Ec = constant, we find

1

β

γ

Ms

∫ ∫
Q

[
∂ e−βH

∂ϕ′
∂uT

∂p′ − ∂ e−βH

∂p′
∂uT

∂ϕ′

]
dp′ dϕ′ = 1

β

γ

Ms

e−βEc

∮
∂(Q)

duT = 0.

Again, applying the same theorem to the first integral on the right-hand side above we find

1

β

αγ

Ms

∫ ∫
Q

{
∂

∂p′

[
(1 − p′2) e−βH ∂uT

∂p′

]
+

∂

∂ϕ′

[
(1 − p′2)−1 e−βH ∂uT

∂ϕ′

]}
dp′ dϕ′

= 1

β

αγ

Ms

∮
∂(Q)

[
(1 − p′2) e−βH ∂uT

∂p′ dϕ′ − (1 − p′2)−1 e−βH ∂uT

∂ϕ′ dp′
]

and the desired result (equation (16)) follows.

Appendix B. Justification for the use of the boundary layer approximation foruT

The Langevin equations in the low-temperature, zero-noise limit arise from Gilbert’s equation
[13] and are [14]:

ṗ = −αγ

Ms

Hp(1 − p2) − γ

Ms

Hϕ

ϕ̇ = γ

Ms

Hp − αγ

(1 − p2)Ms

Hϕ. (B1)

Now uT [16] satisfies approximately the equation:

L+
FP uT = 0
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which yields (cf equation (9))[
αγ

Ms

(1 − p2)Hp +
γ

Ms

Hϕ + 2
αγ

βMs

p

]
∂uT

∂p
+

[
− γ

Ms

Hp +
αγHϕ

Ms(1 − p2)

]
∂uT

∂ϕ

− αγ

βMs

(1 − p2)
∂2uT

∂p2
− αγ

βMs

1

1 − p2

∂2uT

∂ϕ2
= 0 (B2)

which in the low-temperature limit further reduces to[
−αγ

Ms

(1 − p2)Hp − γ

Ms

Hϕ

]
∂uT

∂p
+

[
γ

Ms

Hp − αγ

Ms

Hϕ

1 − p2

]
∂uT

∂ϕ
= 0 (B3)

and which, using (B1), yields:

∂uT

∂p
ṗ +

∂uT

∂ϕ
ϕ̇ = 0.

Hence we have proved that

duT

dt
= 0 (B4)

where (ϕ(t), p(t)) is any trajectory of equations (B1), souT is constant on any such trajectory.
Now all such trajectories converge to the point A of stable equilibrium, and sinceuT is
continuous forE < Ec

uT (ϕ, p) = uT (A) = constant forE < Ec. (B5)

We normalize this constant to 1.
Now uT must also satisfy the boundary conditionuT = 0 for E = Ec (cf the boundary

condition after equation (10)). SouT ≡ 1 cannot be a valid solution nearE = Ec.
This justifies the construction of a boundary layer approximation touT nearE = Ec as

carried out in appendix C below.

Appendix C. Derivation and solution of the boundary layer equation

The partial derivatives ofη are

ηp = −βHp ηpp = −βHpp ηϕ = −βHϕ ηϕϕ = −βHϕϕ.

Also
∂

∂p
= ∂η

∂p

∂

∂η
= −βHp

∂

∂η

∂

∂ϕ
= ∂η

∂ϕ

∂

∂η
= −βHϕ

∂

∂η

∂2

∂p2
= ∂

∂p

(
∂η

∂p

∂

∂η

)
= ∂2η

∂p2

∂

∂η
+

(
∂η

∂p

)2
∂2

∂η2
= −βHpp

∂

∂η
+ β2H 2

p

∂2

∂η2

∂2

∂ϕ2
= ∂

∂ϕ

(
∂η

∂ϕ

∂

∂η

)
= ∂2η

∂ϕ2

∂

∂η
+

(
∂η

∂ϕ

)2
∂2

∂η2
= −βHϕϕ

∂

∂η
+ β2H 2

ϕ

∂2

∂η2

so that the equation (B2) foruT becomes:[
αγ

Ms

(1 − p2)βH 2
p + 2

αγ

Ms

pHp +
αγ

Ms

βH 2
ϕ

(1 − p2)
− αγ

Ms

(1 − p2)Hpp − αγ

Ms

Hϕϕ

1 − p2

]
∂uT

∂η

+

[
αγ

Ms

(1 − p2)βH 2
p +

αγ

Ms

βH 2
ϕ

(1 − p)2

]
∂2uT

∂η2
= 0.
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Dividing across byβ, simplifying and ignoring terms of orderβ−1, we have:[
αγ

Ms

(1 − p2)H 2
p +

αγ

Ms

H 2
ϕ

1 − p2

](
∂uT

∂η
+

∂2uT

∂η2

)
= 0

yielding the so-called boundary layer equation foruT

∂2uT

∂η2
+

∂uT

∂η
= 0

which must be solved subject to the boundary conditions:

uT = 0 whenη = 0

uT → 1 asη → ∞
which has solution:

uT = 1 − e−η.
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